All functions

GradientResult() JacobianResult() HessianResult()

Create DiffResult Object.

forward_deriv() forward_grad_config() forward_jacobian_config() forward_hessian_config() forward_grad() forward_jacobian() forward_hessian()

Wrapper functions for API of ForwardDiff.jl.

reverse_grad() reverse_jacobian() reverse_hessian() reverse_grad_config() reverse_jacobian_config() reverse_hessian_config() reverse_grad_tape() reverse_jacobian_tape() reverse_hessian_tape() reverse_compile()

Wrapper functions for API of ReverseDiff.jl.

TESTING_FUNCS

Testing functions.

ad_setup()

Do initial setup for package autodiffr.

ad_variant()

Create Variant Functions (more) Suitable for AD.

ad_jacobian() ad_hessian() ad_grad() ad_deriv()

Calculate Gradient, Jacobian and Hessian using Automatic Differentiation.

makeJacobianFunc() makeHessianFunc() makeGradFunc() makeDerivFunc()

Create (Optimized) Gradient, Jacobian and Hessian Functions using Automatic Differentiation.

autodiffr

autodiffr.

rSums() rMeans() cSums() cMeans()

Row and Column Sums and Means Compatable with JuliaObject

diagm()

Construct a diagonal matrix

`%m%`

Matrix Multiplication Compatable with JuliaObject.

julia_array()

Create Julia Arrays.

map()

Apply a Function to Multiple List or Vector Arguments

ones()

Create an array of all ones with the same element type and dims as x.

zeros()

Create an array of all zeros with the same element type and dims as x.